1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
/*
-----------------------------------------------------------------------
Copyright: 2010-2021, imec Vision Lab, University of Antwerp
2014-2021, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
-----------------------------------------------------------------------
*/
#ifndef _CUDA_ASTRA3D_H
#define _CUDA_ASTRA3D_H
#include "dims3d.h"
namespace astra {
// TODO: Switch to a class hierarchy as with the 2D algorithms
class CProjectionGeometry3D;
class CParallelProjectionGeometry3D;
class CParallelVecProjectionGeometry3D;
class CConeProjectionGeometry3D;
class CConeVecProjectionGeometry3D;
class CVolumeGeometry3D;
class CFloat32ProjectionData3DGPU;
class AstraSIRT3d_internal;
using astraCUDA3d::Cuda3DProjectionKernel;
using astraCUDA3d::ker3d_default;
using astraCUDA3d::ker3d_sum_square_weights;
class _AstraExport AstraSIRT3d {
public:
AstraSIRT3d();
~AstraSIRT3d();
// Set the volume and projection geometry
bool setGeometry(const CVolumeGeometry3D* pVolGeom,
const CProjectionGeometry3D* pProjGeom);
// Enable supersampling.
//
// The number of rays used in FP is the square of iDetectorSuperSampling.
// The number of rays used in BP is the cube of iVoxelSuperSampling.
bool enableSuperSampling(unsigned int iVoxelSuperSampling,
unsigned int iDetectorSuperSampling);
void setRelaxation(float r);
// Enable volume/sinogram masks
//
// This may optionally be called before init().
// If it is called, setVolumeMask()/setSinogramMask() must be called between
// setSinogram() and iterate().
bool enableVolumeMask();
bool enableSinogramMask();
// Set GPU index
//
// This should be called before init(). Note that setting the GPU index
// in a thread which has already used the GPU may not work.
bool setGPUIndex(int index);
// Allocate GPU buffers and
// precompute geometry-specific data.
//
// This must be called after calling setReconstructionGeometry() and
// setProjectionGeometry() or setFanProjectionGeometry().
bool init();
// Setup input sinogram for a slice.
// pfSinogram must be a float array of size XXX
// NB: iSinogramPitch is measured in floats, not in bytes.
//
// This must be called after init(), and before iterate(). It may be
// called again after iterate()/getReconstruction() to start a new slice.
//
// pfSinogram will only be read from during this call.
bool setSinogram(const float* pfSinogram, unsigned int iSinogramPitch);
// Setup volume mask for a slice.
// pfMask must be a float array of size XXX
// NB: iMaskPitch is measured in floats, not in bytes.
//
// It may only contain the exact values 0.0f and 1.0f. Only volume pixels
// for which pfMask[z] is 1.0f are processed.
bool setVolumeMask(const float* pfMask, unsigned int iMaskPitch);
// Setup sinogram mask for a slice.
// pfMask must be a float array of size XXX
// NB: iMaskPitch is measured in floats, not in bytes.
//
// It may only contain the exact values 0.0f and 1.0f. Only sinogram pixels
// for which pfMask[z] is 1.0f are processed.
bool setSinogramMask(const float* pfMask, unsigned int iMaskPitch);
// Set the starting reconstruction for SIRT.
// pfReconstruction must be a float array of size XXX
// NB: iReconstructionPitch is measured in floats, not in bytes.
//
// This may be called between setSinogram() and iterate().
// If this function is not called before iterate(), SIRT will start
// from a zero reconstruction.
//
// pfReconstruction will only be read from during this call.
bool setStartReconstruction(const float* pfReconstruction,
unsigned int iReconstructionPitch);
// Enable min/max constraint.
//
// These may optionally be called between init() and iterate()
bool setMinConstraint(float fMin);
bool setMaxConstraint(float fMax);
// Perform a number of (additive) SIRT iterations.
// This must be called after setSinogram().
//
// If called multiple times, without calls to setSinogram() or
// setStartReconstruction() in between, iterate() will continue from
// the result of the previous call.
// Calls to getReconstruction() are allowed between calls to iterate() and
// do not change the state.
bool iterate(unsigned int iIterations);
// Get the reconstructed slice.
// pfReconstruction must be a float array of size XXX
// NB: iReconstructionPitch is measured in floats, not in bytes.
//
// This may be called after iterate().
bool getReconstruction(float* pfReconstruction,
unsigned int iReconstructionPitch) const;
// Compute the norm of the difference of the FP of the current
// reconstruction and the sinogram. (This performs one FP.)
// It can be called after iterate().
float computeDiffNorm();
protected:
AstraSIRT3d_internal *pData;
};
class AstraCGLS3d_internal;
class _AstraExport AstraCGLS3d {
public:
AstraCGLS3d();
~AstraCGLS3d();
// Set the volume and projection geometry
bool setGeometry(const CVolumeGeometry3D* pVolGeom,
const CProjectionGeometry3D* pProjGeom);
// Enable supersampling.
//
// The number of rays used in FP is the square of iDetectorSuperSampling.
// The number of rays used in BP is the cube of iVoxelSuperSampling.
bool enableSuperSampling(unsigned int iVoxelSuperSampling,
unsigned int iDetectorSuperSampling);
// Enable volume/sinogram masks
//
// This may optionally be called before init().
// If it is called, setVolumeMask()/setSinogramMask() must be called between
// setSinogram() and iterate().
bool enableVolumeMask();
//bool enableSinogramMask();
// Set GPU index
//
// This should be called before init(). Note that setting the GPU index
// in a thread which has already used the GPU may not work.
bool setGPUIndex(int index);
// Allocate GPU buffers and
// precompute geometry-specific data.
//
// This must be called after calling setReconstructionGeometry() and
// setProjectionGeometry() or setFanProjectionGeometry().
bool init();
// Setup input sinogram for a slice.
// pfSinogram must be a float array of size XXX
// NB: iSinogramPitch is measured in floats, not in bytes.
//
// This must be called after init(), and before iterate(). It may be
// called again after iterate()/getReconstruction() to start a new slice.
//
// pfSinogram will only be read from during this call.
bool setSinogram(const float* pfSinogram, unsigned int iSinogramPitch);
// Setup volume mask for a slice.
// pfMask must be a float array of size XXX
// NB: iMaskPitch is measured in floats, not in bytes.
//
// It may only contain the exact values 0.0f and 1.0f. Only volume pixels
// for which pfMask[z] is 1.0f are processed.
bool setVolumeMask(const float* pfMask, unsigned int iMaskPitch);
// Setup sinogram mask for a slice.
// pfMask must be a float array of size XXX
// NB: iMaskPitch is measured in floats, not in bytes.
//
// It may only contain the exact values 0.0f and 1.0f. Only sinogram pixels
// for which pfMask[z] is 1.0f are processed.
//bool setSinogramMask(const float* pfMask, unsigned int iMaskPitch);
// Set the starting reconstruction for SIRT.
// pfReconstruction must be a float array of size XXX
// NB: iReconstructionPitch is measured in floats, not in bytes.
//
// This may be called between setSinogram() and iterate().
// If this function is not called before iterate(), SIRT will start
// from a zero reconstruction.
//
// pfReconstruction will only be read from during this call.
bool setStartReconstruction(const float* pfReconstruction,
unsigned int iReconstructionPitch);
// Enable min/max constraint.
//
// These may optionally be called between init() and iterate()
//bool setMinConstraint(float fMin);
//bool setMaxConstraint(float fMax);
// Perform a number of (additive) SIRT iterations.
// This must be called after setSinogram().
//
// If called multiple times, without calls to setSinogram() or
// setStartReconstruction() in between, iterate() will continue from
// the result of the previous call.
// Calls to getReconstruction() are allowed between calls to iterate() and
// do not change the state.
bool iterate(unsigned int iIterations);
// Get the reconstructed slice.
// pfReconstruction must be a float array of size XXX
// NB: iReconstructionPitch is measured in floats, not in bytes.
//
// This may be called after iterate().
bool getReconstruction(float* pfReconstruction,
unsigned int iReconstructionPitch) const;
// Compute the norm of the difference of the FP of the current
// reconstruction and the sinogram. (This performs one FP.)
// It can be called after iterate().
float computeDiffNorm();
protected:
AstraCGLS3d_internal *pData;
};
bool convertAstraGeometry_dims(const CVolumeGeometry3D* pVolGeom,
const CProjectionGeometry3D* pProjGeom,
astraCUDA3d::SDimensions3D& dims);
bool convertAstraGeometry(const CVolumeGeometry3D* pVolGeom,
const CProjectionGeometry3D* pProjGeom,
SPar3DProjection*& pParProjs,
SConeProjection*& pConeProjs,
astraCUDA3d::SProjectorParams3D& params);
_AstraExport bool astraCudaFP(const float* pfVolume, float* pfProjections,
const CVolumeGeometry3D* pVolGeom,
const CProjectionGeometry3D* pProjGeom,
int iGPUIndex, int iDetectorSuperSampling,
Cuda3DProjectionKernel projKernel);
_AstraExport bool astraCudaBP(float* pfVolume, const float* pfProjections,
const CVolumeGeometry3D* pVolGeom,
const CProjectionGeometry3D* pProjGeom,
int iGPUIndex, int iVoxelSuperSampling);
_AstraExport bool astraCudaBP_SIRTWeighted(float* pfVolume, const float* pfProjections,
const CVolumeGeometry3D* pVolGeom,
const CProjectionGeometry3D* pProjGeom,
int iGPUIndex, int iVoxelSuperSampling);
_AstraExport void uploadMultipleProjections(CFloat32ProjectionData3DGPU *proj,
const float *data,
unsigned int y_min,
unsigned int y_max);
}
#endif
|