/tomo/pyhst

To get this branch, use:
bzr branch http://suren.me/webbzr/tomo/pyhst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
/*
 * The PyHST program is Copyright (C) 2002-2011 of the
 * European Synchrotron Radiation Facility (ESRF) and
 * Karlsruhe Institute of Technology (KIT).
 *
 * PyHST is free software: you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * hst is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>

#include "hst_reconstructor.h"

int hst_reconstructor_init_context(HSTReconstructorContext *ctx, HSTReconstructor *recon, HSTSetup *setup) {
    memcpy(ctx, recon, sizeof(HSTReconstructor));
    ctx->setup = setup;
    ctx->processed_slices = 0;
    
    return 0;
}

void hst_reconstructor_free_context(HSTReconstructorContext *ctx) {
}

int hst_reconstructor_postprocess_slice(HSTReconstructorContext *ctx, float *slice, const float *sinograms) {
    HSTSetup *setup;
    
    int i, x, y;
    
    int num_x;
    int num_y;
    int num_bins;
    int num_projections;

    /* The block of variables to reproduce the fundamental, needed if SUMRULE = 1*/
    float Sino_Sum = 0;
    float Slice_Sum = 0;
    
    assert(ctx);
    
    setup = ctx->setup;
    assert(setup);
    
    num_x = setup->num_x;
    num_y = setup->num_y;
    num_bins = setup->num_bins;
    num_projections = setup->num_projections;

    if (setup->zerooffmask) {
	assert(setup->minX);
	assert(setup->maxX);
	
        for (y = 0; y < num_y; y++) {

            for (x = 0; x <= setup->minX[y]; x++) {
                slice[y*num_x +x] = 0;
            }
            for (x = setup->maxX[y]; x < num_x; x++) {
                slice[y*num_x +x] = 0;
            }
        }
    }

    if (setup->sum_rule == 1) {
	    /* This could be moved to GPU (see reduction sample in SDK). */
        for (i = 0; i < num_x * num_y; i++) {
            Slice_Sum += slice[i];
        }

        for (i = 0; i < num_projections * num_bins;i++) {
            Sino_Sum += sinograms[i];
        }

        Sino_Sum *= 2.0 / M_PI ;
	
        for (i = 0; i < num_x*num_y; i++) {
            slice[i] += (Sino_Sum - Slice_Sum) / (num_x * num_y);
        }
    }

    return 0;
}