/opencl/oclfft

To get this branch, use:
bzr branch http://suren.me/webbzr/opencl/oclfft
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
//
// File:       fft_execute.cpp
//
// Version:    <1.0>
//
// Disclaimer: IMPORTANT:  This Apple software is supplied to you by Apple Inc. ("Apple")
//             in consideration of your agreement to the following terms, and your use,
//             installation, modification or redistribution of this Apple software
//             constitutes acceptance of these terms.  If you do not agree with these
//             terms, please do not use, install, modify or redistribute this Apple
//             software.¬
//
//             In consideration of your agreement to abide by the following terms, and
//             subject to these terms, Apple grants you a personal, non - exclusive
//             license, under Apple's copyrights in this original Apple software ( the
//             "Apple Software" ), to use, reproduce, modify and redistribute the Apple
//             Software, with or without modifications, in source and / or binary forms;
//             provided that if you redistribute the Apple Software in its entirety and
//             without modifications, you must retain this notice and the following text
//             and disclaimers in all such redistributions of the Apple Software. Neither
//             the name, trademarks, service marks or logos of Apple Inc. may be used to
//             endorse or promote products derived from the Apple Software without specific
//             prior written permission from Apple.  Except as expressly stated in this
//             notice, no other rights or licenses, express or implied, are granted by
//             Apple herein, including but not limited to any patent rights that may be
//             infringed by your derivative works or by other works in which the Apple
//             Software may be incorporated.
//
//             The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO
//             WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
//             WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
//             PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
//             ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
//
//             IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
//             CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//             SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//             INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
//             AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
//             UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
//             OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
//
////////////////////////////////////////////////////////////////////////////////////////////////////


#include "fft_internal.h"
#include "clFFT.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define max(a,b) (((a)>(b)) ? (a) : (b))
#define min(a,b) (((a)<(b)) ? (a) : (b))

static cl_int
allocateTemporaryBufferInterleaved(cl_fft_plan *plan, cl_uint batchSize)
{
	cl_int err = CL_SUCCESS;
	if(plan->temp_buffer_needed && plan->last_batch_size != batchSize) 
	{
		plan->last_batch_size = batchSize; 
		size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * 2 * sizeof(cl_float);
		
		if(plan->tempmemobj)
			clReleaseMemObject(plan->tempmemobj);
			
		plan->tempmemobj = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
	}
	return err;	
}

static cl_int
allocateTemporaryBufferPlannar(cl_fft_plan *plan, cl_uint batchSize)
{
	cl_int err = CL_SUCCESS;
	cl_int terr;
	if(plan->temp_buffer_needed && plan->last_batch_size != batchSize) 
	{
		plan->last_batch_size = batchSize; 
		size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * sizeof(cl_float);
		
		if(plan->tempmemobj_real)
			clReleaseMemObject(plan->tempmemobj_real);

		if(plan->tempmemobj_imag)
			clReleaseMemObject(plan->tempmemobj_imag);			
			
		plan->tempmemobj_real = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
		plan->tempmemobj_imag = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &terr);
		err |= terr;
 	}	
	return err;
}

void
getKernelWorkDimensions(cl_fft_plan *plan, cl_fft_kernel_info *kernelInfo, cl_int *batchSize, size_t *gWorkItems, size_t *lWorkItems)
{
	*lWorkItems = kernelInfo->num_workitems_per_workgroup;
	int numWorkGroups = kernelInfo->num_workgroups;
    int numXFormsPerWG = kernelInfo->num_xforms_per_workgroup;
	
	switch(kernelInfo->dir)
	{
		case cl_fft_kernel_x:
            *batchSize *= (plan->n.y * plan->n.z);
            numWorkGroups = (*batchSize % numXFormsPerWG) ? (*batchSize/numXFormsPerWG + 1) : (*batchSize/numXFormsPerWG);
            numWorkGroups *= kernelInfo->num_workgroups;
			break;
		case cl_fft_kernel_y:
			*batchSize *= plan->n.z;
			numWorkGroups *= *batchSize;
			break;
		case cl_fft_kernel_z:
			numWorkGroups *= *batchSize;
			break;
	}
	
	*gWorkItems = numWorkGroups * *lWorkItems;
}

cl_int 
clFFT_ExecuteInterleaved( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir, 
						 cl_mem data_in, cl_mem data_out, 
						 cl_int num_events, cl_event *event_list, cl_event *event )
{	
	int s;
	cl_fft_plan *plan = (cl_fft_plan *) Plan;
	if(plan->format != clFFT_InterleavedComplexFormat)
		return CL_INVALID_VALUE;
	
	cl_int err;
	size_t gWorkItems, lWorkItems;
	int inPlaceDone;
	
	cl_int isInPlace = data_in == data_out ? 1 : 0;
	
	if((err = allocateTemporaryBufferInterleaved(plan, batchSize)) != CL_SUCCESS)
		return err;	
	
	cl_mem memObj[3];
	memObj[0] = data_in;
	memObj[1] = data_out;
	memObj[2] = plan->tempmemobj;
	cl_fft_kernel_info *kernelInfo = plan->kernel_info;
	int numKernels = plan->num_kernels;
	
	int numKernelsOdd = numKernels & 1;
	int currRead  = 0;
	int currWrite = 1;
	
	// at least one external dram shuffle (transpose) required
	if(plan->temp_buffer_needed) 
	{
		// in-place transform
		if(isInPlace) 
		{
			inPlaceDone = 0;
			currRead  = 1;
			currWrite = 2;
		}
		else
		{
			currWrite = (numKernels & 1) ? 1 : 2;
		}
		
		while(kernelInfo) 
		{
			if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible) 
			{
				currWrite = currRead;
				inPlaceDone = 1;
			}
			
			s = batchSize;
			getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
			err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
			err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
			err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
			err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
			
			err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
			if(err)
				return err;
			
			currRead  = (currWrite == 1) ? 1 : 2;
			currWrite = (currWrite == 1) ? 2 : 1; 
			
			kernelInfo = kernelInfo->next;
		}			
	}
	// no dram shuffle (transpose required) transform
	// all kernels can execute in-place.
	else {
		
		while(kernelInfo)
		{
		    s = batchSize;
		    getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
		    err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
		    err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
		    err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
		    err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
		
		    err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
		    if(err)
			    return err;		
			
			currRead  = 1;
			currWrite = 1;
			
			kernelInfo = kernelInfo->next;
		}
	}
	
	return err;
}

cl_int 
clFFT_ExecutePlannar( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir, 
					  cl_mem data_in_real, cl_mem data_in_imag, cl_mem data_out_real, cl_mem data_out_imag,
					  cl_int num_events, cl_event *event_list, cl_event *event)
{	
	int s;
	cl_fft_plan *plan = (cl_fft_plan *) Plan;
	
	if(plan->format != clFFT_SplitComplexFormat)
		return CL_INVALID_VALUE;
	
	cl_int err;
	size_t gWorkItems, lWorkItems;
	int inPlaceDone;
	
	cl_int isInPlace = ((data_in_real == data_out_real) && (data_in_imag == data_out_imag)) ? 1 : 0;
	
	if((err = allocateTemporaryBufferPlannar(plan, batchSize)) != CL_SUCCESS)
		return err;	
	
	cl_mem memObj_real[3];
	cl_mem memObj_imag[3];
	memObj_real[0] = data_in_real;
	memObj_real[1] = data_out_real;
	memObj_real[2] = plan->tempmemobj_real;
	memObj_imag[0] = data_in_imag;
	memObj_imag[1] = data_out_imag;
	memObj_imag[2] = plan->tempmemobj_imag;
		
	cl_fft_kernel_info *kernelInfo = plan->kernel_info;
	int numKernels = plan->num_kernels;
	
	int numKernelsOdd = numKernels & 1;
	int currRead  = 0;
	int currWrite = 1;
	
	// at least one external dram shuffle (transpose) required
	if(plan->temp_buffer_needed) 
	{
		// in-place transform
		if(isInPlace) 
		{
			inPlaceDone = 0;
			currRead  = 1;
			currWrite = 2;
		}
		else
		{
			currWrite = (numKernels & 1) ? 1 : 2;
		}
		
		while(kernelInfo) 
		{
			if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible) 
			{
				currWrite = currRead;
				inPlaceDone = 1;
			}
			
			s = batchSize;
			getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
			err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
			err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
			err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
			err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
			err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
			err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
			
			err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
			if(err)
				return err;			
			
			currRead  = (currWrite == 1) ? 1 : 2;
			currWrite = (currWrite == 1) ? 2 : 1; 
			
			kernelInfo = kernelInfo->next;
		}			
	}
	// no dram shuffle (transpose required) transform
	else {
		
		while(kernelInfo)
		{
		    s = batchSize;
		    getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
		    err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
		    err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
		    err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
		    err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
		    err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
		    err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
		
		    err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
		    if(err)
			    return err;	
			
			currRead  = 1;
			currWrite = 1;
		
			kernelInfo = kernelInfo->next;
		}
	}
	
	return err;
}

cl_int 
clFFT_1DTwistInterleaved(clFFT_Plan Plan, cl_command_queue queue, cl_mem array, 
						 size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir)
{
	cl_fft_plan *plan = (cl_fft_plan *) Plan;
	
	unsigned int N = numRows*numCols;
	unsigned int nCols = numCols;
	unsigned int sRow = startRow;
	unsigned int rToProcess = rowsToProcess;
	int d = dir;
	int err = 0;
	
	cl_device_id device_id;
	err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
	if(err)
	    return err;
	
	size_t gSize;
	err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
	if(err)
	    return err;
	      
	gSize = min(128, gSize);
	size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
	size_t numLocalThreads[1]  = { gSize };
	
	err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array);
	err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(unsigned int), &sRow);
	err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &nCols);
	err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &N);
	err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &rToProcess);
	err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(int), &d);
	
	err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);            
	
	return err;	
}

cl_int 
clFFT_1DTwistPlannar(clFFT_Plan Plan, cl_command_queue queue, cl_mem array_real, cl_mem array_imag, 
					 size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir)
{
	cl_fft_plan *plan = (cl_fft_plan *) Plan;
	
	unsigned int N = numRows*numCols;
	unsigned int nCols = numCols;
	unsigned int sRow = startRow;
	unsigned int rToProcess = rowsToProcess;
	int d = dir;
	int err = 0;
	
	cl_device_id device_id;
	err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
	if(err)
	    return err;
	
	size_t gSize;
	err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
	if(err)
	    return err;
	      
	gSize = min(128, gSize);
	size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
	size_t numLocalThreads[1]  = { gSize };
	
	err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array_real);
	err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(cl_mem), &array_imag);
	err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &sRow);
	err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &nCols);
	err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &N);
	err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(unsigned int), &rToProcess);
	err |= clSetKernelArg(plan->twist_kernel, 6, sizeof(int), &d);
	
	err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);            
	
	return err;	
}