/normxcorr/trunk

To get this branch, use:
bzr branch http://suren.me/webbzr/normxcorr/trunk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "normxcorr_hw_msg.h"
#include "hw_sched.h"

//#include "mrses_ppu.h"


#define MUTEX_INIT(ctx, name) \
    if (!err) { \
	ctx->name##_mutex = g_mutex_new(); \
	if (!ctx->name##_mutex) err = DICT_ERROR_GLIB; \
    }
    
#define MUTEX_FREE(ctx, name) \
    if (ctx->name##_mutex) g_mutex_free(ctx->name##_mutex);

#define COND_INIT(ctx, name) \
    MUTEX_INIT(ctx, name##_cond) \
    if (!err) { \
	ctx->name##_cond = g_cond_new(); \
	if (!ctx->name##_cond) { \
	    err = DICT_ERROR_GLIB; \
	    MUTEX_FREE(ctx, name##_cond) \
	} \
    }

#define COND_FREE(ctx, name) \
    if (ctx->name##_cond) g_cond_free(ctx->name##_cond); \
    MUTEX_FREE(ctx, name##_cond)

HWRunFunction ppu_run[] = {
    (HWRunFunction)NULL
};

static int hw_sched_initialized = 0;

int hw_sched_init() {
    if (!hw_sched_initialized) {
	g_thread_init(NULL);
	hw_sched_initialized = 1;
    }

    return 0;
}



HWSched hw_sched_create(int ppu_count) {
    int i;
    int err = 0;

    HWSched ctx;

    hw_sched_init();
    
    ctx = (HWSched)malloc(sizeof(HWSchedS));
    if (!ctx) return NULL;

    memset(ctx, 0, sizeof(HWSchedS));

    ctx->status = 1;

    MUTEX_INIT(ctx, data);
    COND_INIT(ctx, compl);
    COND_INIT(ctx, job);
    
    if (err) {
	reportError("Error initializing conditions and mutexes");
	hw_sched_destroy(ctx);
	return NULL;
    }

    ctx->n_threads = 0;
    for (i = 0; i < ppu_count; i++) {
	ctx->thread[ctx->n_threads] = hw_thread_create(ctx, ctx->n_threads, NULL, ppu_run, NULL);
	if (ctx->thread[ctx->n_threads]) ++ctx->n_threads;
    }
    
    return ctx;
}

static int hw_sched_wait_threads(HWSched ctx) {
    int i = 0;
    
    hw_sched_lock(ctx, compl_cond);
    while (i < ctx->n_threads) {
        for (; i < ctx->n_threads; i++) {
	    if (ctx->thread[i]->status == HW_THREAD_STATUS_INIT) {
		hw_sched_wait(ctx, compl);
		break;
	    }
	}
	
    }
    hw_sched_unlock(ctx, compl_cond);
    
    ctx->started = 1;

    return 0;
}

void hw_sched_destroy(HWSched ctx) {
    int i;

    if (ctx->n_threads > 0) {
	if (!ctx->started) {
	    hw_sched_wait_threads(ctx);
	}

	ctx->status = 0;
	hw_sched_lock(ctx, job_cond);
	hw_sched_broadcast(ctx, job);
	hw_sched_unlock(ctx, job_cond);
    
	for (i = 0; i < ctx->n_threads; i++) {
	    hw_thread_destroy(ctx->thread[i]);
	}
    }

    COND_FREE(ctx, job);
    COND_FREE(ctx, compl);
    MUTEX_FREE(ctx, data);

    free(ctx);
}

int hw_sched_limit_num_threads(HWSched ctx, int count) {
    ctx->n_threads_actual = count;
    return 0;
}


int hw_sched_set_sequential_mode(HWSched ctx, int *n_blocks, int *cur_block) {
    ctx->mode = HW_SCHED_MODE_SEQUENTIAL;
    ctx->n_blocks = n_blocks;
    ctx->cur_block = cur_block;
    
    return 0;
}

int hw_sched_get_chunk(HWSched ctx, int thread_id) {
    int block;

    if ((ctx->n_threads_actual)&&(thread_id >= ctx->n_threads_actual)) return -1;

    switch (ctx->mode) {
	case HW_SCHED_MODE_PREALLOCATED:
	    if (ctx->thread[thread_id]->status == HW_THREAD_STATUS_IDLE) {
		return thread_id;
	    } else {
		return -1;
	    }
	case HW_SCHED_MODE_SEQUENTIAL:
	    hw_sched_lock(ctx, data);
	    block = *ctx->cur_block;
	    if (block < *ctx->n_blocks) {
		*ctx->cur_block = *ctx->cur_block + 1;
	    } else {
		block = -1;
	    }
	    hw_sched_unlock(ctx, data);
	    return block;
	default:
	    return -1;
    }

    return -1;
}

    
int hw_sched_schedule_task(HWSched ctx, void *appctx, HWEntry entry) {
    if (!ctx->started) {
	hw_sched_wait_threads(ctx);
    }
    
    ctx->ctx = appctx;
    ctx->entry = entry;
    
    hw_sched_lock(ctx, compl_cond);

    hw_sched_lock(ctx, job_cond);
    hw_sched_broadcast(ctx, job);
    hw_sched_unlock(ctx, job_cond);

    return 0;
}

int hw_sched_wait_task(HWSched ctx) {
    int i = 0;

    while (i < ctx->n_threads) {
        for (; i < ctx->n_threads; i++) {
	    if (ctx->thread[i]->status == HW_THREAD_STATUS_DONE) {
		ctx->thread[i]->status = HW_THREAD_STATUS_IDLE;
	    } else {
		hw_sched_wait(ctx, compl);
		break;
	    }
	}
	
    }

    hw_sched_unlock(ctx, compl_cond);

    return 0;
}