/alps/pcitool

To get this branch, use:
bzr branch http://suren.me/webbzr/alps/pcitool
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#define _PCILIB_DMA_NWL_C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "pci.h"
#include "pcilib.h"
#include "error.h"
#include "tools.h"
#include "nwl.h"

/* Common DMA registers */
#define REG_DMA_CTRL_STATUS     0x4000      /**< DMA Common Ctrl & Status */

/* These engine registers are applicable to both S2C and C2S channels. 
 * Register field mask and shift definitions are later in this file.
 */

#define REG_DMA_ENG_CAP         0x00000000  /**< DMA Engine Capabilities */
#define REG_DMA_ENG_CTRL_STATUS 0x00000004  /**< DMA Engine Control */
#define REG_DMA_ENG_NEXT_BD     0x00000008  /**< HW Next desc pointer */
#define REG_SW_NEXT_BD          0x0000000C  /**< SW Next desc pointer */
#define REG_DMA_ENG_LAST_BD     0x00000010  /**< HW Last completed pointer */
#define REG_DMA_ENG_ACTIVE_TIME 0x00000014  /**< DMA Engine Active Time */
#define REG_DMA_ENG_WAIT_TIME   0x00000018  /**< DMA Engine Wait Time */
#define REG_DMA_ENG_COMP_BYTES  0x0000001C  /**< DMA Engine Completed Bytes */

/* Register masks. The following constants define bit locations of various
 * control bits in the registers. For further information on the meaning of 
 * the various bit masks, refer to the hardware spec.
 *
 * Masks have been written assuming HW bits 0-31 correspond to SW bits 0-31 
 */

/** @name Bitmasks of REG_DMA_CTRL_STATUS register.
 * @{
 */
#define DMA_INT_ENABLE              0x00000001  /**< Enable global interrupts */
#define DMA_INT_DISABLE             0x00000000  /**< Disable interrupts */
#define DMA_INT_ACTIVE_MASK         0x00000002  /**< Interrupt active? */
#define DMA_INT_PENDING_MASK        0x00000004  /**< Engine interrupt pending */
#define DMA_INT_MSI_MODE            0x00000008  /**< MSI or Legacy mode? */
#define DMA_USER_INT_ENABLE         0x00000010  /**< Enable user interrupts */
#define DMA_USER_INT_ACTIVE_MASK    0x00000020  /**< Int - user interrupt */
#define DMA_USER_INT_ACK            0x00000020  /**< Acknowledge */
#define DMA_MPS_USED                0x00000700  /**< MPS Used */
#define DMA_MRRS_USED               0x00007000  /**< MRRS Used */
#define DMA_S2C_ENG_INT_VAL         0x00FF0000  /**< IRQ value of 1st 8 S2Cs */
#define DMA_C2S_ENG_INT_VAL         0xFF000000  /**< IRQ value of 1st 8 C2Ss */

/** @name Bitmasks of REG_DMA_ENG_CAP register.
 * @{
 */
/* DMA engine characteristics */
#define DMA_ENG_PRESENT_MASK    0x00000001  /**< DMA engine present? */
#define DMA_ENG_DIRECTION_MASK  0x00000002  /**< DMA engine direction */
#define DMA_ENG_C2S             0x00000002  /**< DMA engine - C2S */
#define DMA_ENG_S2C             0x00000000  /**< DMA engine - S2C */
#define DMA_ENG_TYPE_MASK       0x00000030  /**< DMA engine type */
#define DMA_ENG_BLOCK           0x00000000  /**< DMA engine - Block type */
#define DMA_ENG_PACKET          0x00000010  /**< DMA engine - Packet type */
#define DMA_ENG_NUMBER          0x0000FF00  /**< DMA engine number */
#define DMA_ENG_BD_MAX_BC       0x3F000000  /**< DMA engine max buffer size */

/* Shift constants for selected masks */
#define DMA_ENG_NUMBER_SHIFT        8
#define DMA_ENG_BD_MAX_BC_SHIFT     24

#define DMA_ENGINE_PER_SIZE     0x100   /**< Separation between engine regs */
#define DMA_OFFSET              0       /**< Starting register offset */
                                        /**< Size of DMA engine reg space */
#define DMA_SIZE                (MAX_DMA_ENGINES * DMA_ENGINE_PER_SIZE)

/*
pcilib_register_bank_description_t ipecamera_register_banks[] = {
    { PCILIB_REGISTER_DMABANK0, PCILIB_BAR0, 128, PCILIB_DEFAULT_PROTOCOL, DMA_NWL_OFFSET, DMA_NWL_OFFSET, PCILIB_LITTLE_ENDIAN, 32, PCILIB_LITTLE_ENDIAN, "%lx", "dma", "NorthWest Logick DMA Engine" },
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, NULL, NULL }
};

pcilib_register_description_t dma_nwl_registers[] = {
    {0, 	0, 	32, 	0, 	PCILIB_REGISTER_R , PCILIB_REGISTER_DMABANK, "dma_capabilities",  ""},
    {1, 	0, 	32, 	0, 	PCILIB_REGISTER_RW, PCILIB_REGISTER_DMABANK, "dma_control",  ""},
};
*/

typedef struct {
    pcilib_dma_engine_description_t desc;
    char *base_addr;
} pcilib_nwl_engine_description_t;


struct nwl_dma_s {
    pcilib_t *pcilib;
    
    pcilib_register_bank_description_t *dma_bank;
    char *base_addr;
    
    pcilib_nwl_engine_description_t engines[PCILIB_MAX_DMA_ENGINES + 1];
};

#define nwl_read_register(var, ctx, base, reg) pcilib_datacpy(&var, base + reg, 4, 1, ctx->dma_bank->raw_endianess)
#define nwl_write_register(var, ctx, base, reg) pcilib_datacpy(base + reg, &var, 4, 1, ctx->dma_bank->raw_endianess)

static int nwl_read_engine_config(nwl_dma_t *ctx, pcilib_nwl_engine_description_t *info, char *base) {
    uint32_t val;
    
    nwl_read_register(val, ctx, base, REG_DMA_ENG_CAP);

    if ((val & DMA_ENG_PRESENT_MASK) == 0) return PCILIB_ERROR_NOTAVAILABLE;
    
    info->desc.addr = (val & DMA_ENG_NUMBER) >> DMA_ENG_NUMBER_SHIFT;
    
    switch (val & DMA_ENG_DIRECTION_MASK) {
	case  DMA_ENG_C2S:
	    info->desc.direction = PCILIB_DMA_FROM_DEVICE;
	break;
	default:
	    info->desc.direction = PCILIB_DMA_TO_DEVICE;
    }
    
    switch (val & DMA_ENG_TYPE_MASK) {
	case DMA_ENG_BLOCK:
	    info->desc.type = PCILIB_DMA_TYPE_BLOCK;
	break;
	case DMA_ENG_PACKET:
	    info->desc.type = PCILIB_DMA_TYPE_PACKET;
	break;
	default:
	    info->desc.type = PCILIB_DMA_TYPE_UNKNOWN;
    }
    
    info->desc.addr_bits = (val & DMA_ENG_BD_MAX_BC) >> DMA_ENG_BD_MAX_BC_SHIFT;
    
    return 0;
}

pcilib_dma_context_t *dma_nwl_init(pcilib_t *pcilib) {
    int i;
    int err;
    pcilib_dma_t n_engines;

    pcilib_model_description_t *model_info = pcilib_get_model_description(pcilib);
    
    nwl_dma_t *ctx = malloc(sizeof(nwl_dma_t));
    if (ctx) {
	memset(ctx, 0, sizeof(nwl_dma_t));
	ctx->pcilib = pcilib;
	pcilib_register_bank_t dma_bank = pcilib_find_bank_by_addr(pcilib, PCILIB_REGISTER_BANK_DMA);

	if (dma_bank == PCILIB_REGISTER_BANK_INVALID) {
	    pcilib_error("DMA Register Bank could not be found");
	    return NULL;
	}
	
	ctx->dma_bank = model_info->banks + dma_bank;
	ctx->base_addr = pcilib_resolve_register_address(pcilib, ctx->dma_bank->bar, ctx->dma_bank->read_addr);

	for (i = 0, n_engines = 0; i < 2 * PCILIB_MAX_DMA_ENGINES; i++) {
	    char *addr = ctx->base_addr + DMA_OFFSET + i * DMA_ENGINE_PER_SIZE;
	    err = nwl_read_engine_config(ctx, ctx->engines + n_engines, addr);
	    if (!err) {
		ctx->engines[n_engines].base_addr = addr;
		pcilib_set_dma_engine_description(pcilib, n_engines, (pcilib_dma_engine_description_t*)(ctx->engines + n_engines));
		++n_engines;
	    }
	}
	pcilib_set_dma_engine_description(pcilib, n_engines, NULL);
    }
    return (pcilib_dma_context_t*)ctx;
}

void  dma_nwl_free(pcilib_dma_context_t *vctx) {
    nwl_dma_t *ctx = (nwl_dma_t*)vctx;
    if (ctx) {
	free(ctx);
    }
}