diff options
Diffstat (limited to 'Wrappers/Matlab/demos')
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m | 27 | ||||
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_denoise.m | 25 |
2 files changed, 42 insertions, 10 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m index c087433..9a65e37 100644 --- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m @@ -57,23 +57,38 @@ figure; imshow(u_sb(:,:,15), [0 1]); title('SB-TV denoised volume (CPU)'); % tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; % figure; imshow(u_sbG(:,:,15), [0 1]); title('SB-TV denoised volume (GPU)'); %% -%% fprintf('Denoise a volume using Nonlinear-Diffusion model (CPU) \n'); iter_diff = 300; % number of diffusion iterations -lambda_regDiff = 0.06; % regularisation for the diffusivity -sigmaPar = 0.04; % edge-preserving parameter +lambda_regDiff = 0.025; % regularisation for the diffusivity +sigmaPar = 0.015; % edge-preserving parameter tau_param = 0.025; % time-marching constant tic; u_diff = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; figure; imshow(u_diff(:,:,15), [0 1]); title('Diffusion denoised volume (CPU)'); %% % fprintf('Denoise a volume using Nonlinear-Diffusion model (GPU) \n'); % iter_diff = 300; % number of diffusion iterations -% lambda_regDiff = 0.06; % regularisation for the diffusivity -% sigmaPar = 0.04; % edge-preserving parameter +% lambda_regDiff = 0.025; % regularisation for the diffusivity +% sigmaPar = 0.015; % edge-preserving parameter % tau_param = 0.025; % time-marching constant % tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; % figure; imshow(u_diff_g(:,:,15), [0 1]); title('Diffusion denoised volume (GPU)'); %% +fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); +iter_diff = 300; % number of diffusion iterations +lambda_regDiff = 3.5; % regularisation for the diffusivity +sigmaPar = 0.02; % edge-preserving parameter +tau_param = 0.0015; % time-marching constant +tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +figure; imshow(u_diff4(:,:,15), [0 1]); title('Diffusion 4thO denoised volume (CPU)'); +%% +% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); +% iter_diff = 300; % number of diffusion iterations +% lambda_regDiff = 3.5; % regularisation for the diffusivity +% sigmaPar = 0.02; % edge-preserving parameter +% tau_param = 0.0015; % time-marching constant +% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +% figure; imshow(u_diff4_g(:,:,15), [0 1]); title('Diffusion 4thO denoised volume (GPU)'); +%% %>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); @@ -107,4 +122,4 @@ epsil_tol = 1.0e-05; % tolerance eta = 0.2; % Reference image gradient smoothing constant tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; figure; imshow(u_fgp_dtv_g(:,:,15), [0 1]); title('FGP-dTV denoised volume (GPU)'); -%%
\ No newline at end of file +%% diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m index d93f477..8289f41 100644 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -53,20 +53,37 @@ figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)'); %% fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n'); iter_diff = 800; % number of diffusion iterations -lambda_regDiff = 0.06; % regularisation for the diffusivity -sigmaPar = 0.04; % edge-preserving parameter +lambda_regDiff = 0.025; % regularisation for the diffusivity +sigmaPar = 0.015; % edge-preserving parameter tau_param = 0.025; % time-marching constant tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)'); %% % fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n'); % iter_diff = 800; % number of diffusion iterations -% lambda_regDiff = 0.06; % regularisation for the diffusivity -% sigmaPar = 0.04; % edge-preserving parameter +% lambda_regDiff = 0.025; % regularisation for the diffusivity +% sigmaPar = 0.015; % edge-preserving parameter % tau_param = 0.025; % time-marching constant % tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; % figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)'); %% +fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); +iter_diff = 800; % number of diffusion iterations +lambda_regDiff = 3.5; % regularisation for the diffusivity +sigmaPar = 0.02; % edge-preserving parameter +tau_param = 0.0015; % time-marching constant +tic; u_diff4 = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)'); +%% +% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); +% iter_diff = 800; % number of diffusion iterations +% lambda_regDiff = 3.5; % regularisation for the diffusivity +% sigmaPar = 0.02; % edge-preserving parameter +% tau_param = 0.0015; % time-marching constant +% tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +% figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)'); +%% + %>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % fprintf('Denoise using the FGP-dTV model (CPU) \n'); |