diff options
| author | Edoardo Pasca <edo.paskino@gmail.com> | 2018-01-22 16:31:15 +0000 | 
|---|---|---|
| committer | Edoardo Pasca <edo.paskino@gmail.com> | 2018-01-23 22:45:21 +0000 | 
| commit | 6593e5793c5387d60807764dfebaa29c66ccb4f4 (patch) | |
| tree | 8c586615c4465d4316faaf713d556ee391eaad21 | |
| parent | 3cc20874098867aab11313b7fb1d1f65c400fa0c (diff) | |
debugging #13
| -rw-r--r-- | Wrappers/Python/test/test_regularizers.py | 74 | 
1 files changed, 39 insertions, 35 deletions
diff --git a/Wrappers/Python/test/test_regularizers.py b/Wrappers/Python/test/test_regularizers.py index 27e4ed3..343708f 100644 --- a/Wrappers/Python/test/test_regularizers.py +++ b/Wrappers/Python/test/test_regularizers.py @@ -15,7 +15,7 @@ from enum import Enum  import timeit  #from PIL import Image  #from Regularizer import Regularizer -from ccpi.imaging.Regularizer import Regularizer +from ccpi.filters.Regularizer import Regularizer  ###############################################################################  #https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956 @@ -47,8 +47,8 @@ def nrmse(im1, im2):  # u = SplitBregman_TV(single(u0), 10, 30, 1e-04); -#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" -filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif" +filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" +#filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"  #filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'  #reader = vtk.vtkTIFFReader() @@ -96,7 +96,7 @@ if use_object:      # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30,                #tolerance_constant=1e-4,                 #TV_Penalty=Regularizer.TotalVariationPenalty.l1) -    plotme = reg() [0] +    plotme = reg(output_all=True) [0]      pars = reg.pars      textstr = reg.printParametersToString()  @@ -127,8 +127,8 @@ imgplot = plt.imshow(plotme,cmap="gray")  ###################### FGP_TV #########################################  # u = FGP_TV(single(u0), 0.05, 100, 1e-04); -out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005, -                          number_of_iterations=50) +out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=5e-4, +                          number_of_iterations=10, output_all=True)  pars = out2[-2]  reg_output.append(out2) @@ -154,10 +154,14 @@ imgplot = plt.imshow(reg_output[-1][0],cmap="gray")  #Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);   #input, regularization_parameter , time_step, number_of_iterations,  #                  tolerance_constant, restrictive_Z_smoothing=0 + +del out2  out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,                            time_step=0.0003, -                          tolerance_constant=0.0001, +                          tolerance_constant=0.001,                            number_of_iterations=300) +print ("call ended??") +print (out2[0].shape)  pars = out2[-2]  reg_output.append(out2) @@ -180,24 +184,24 @@ imgplot = plt.imshow(reg_output[-1][0],cmap="gray")  # #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise  # #   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);  -out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, -                       searching_window_ratio=3, -                       similarity_window_ratio=1, -                       PB_filtering_parameter=0.08) -pars = out2[-2] -reg_output.append(out2) +# out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, +                       # searching_window_ratio=3, +                       # similarity_window_ratio=1, +                       # PB_filtering_parameter=0.08) +# pars = out2[-2] +# reg_output.append(out2) -a=fig.add_subplot(2,3,5) +# a=fig.add_subplot(2,3,5) -textstr = out2[-1] +# textstr = out2[-1] -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -        verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0],cmap="gray") +# # these are matplotlib.patch.Patch properties +# props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# # place a text box in upper left in axes coords +# a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +        # verticalalignment='top', bbox=props) +# imgplot = plt.imshow(reg_output[-1][0],cmap="gray")  # ###################### TGV_PD ######################################### @@ -207,25 +211,25 @@ imgplot = plt.imshow(reg_output[-1][0],cmap="gray")  # #   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); -out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, -                           first_order_term=1.3, -                           second_order_term=1, -                           number_of_iterations=550) -pars = out2[-2] -reg_output.append(out2) +# out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, +                           # first_order_term=1.3, +                           # second_order_term=1, +                           # number_of_iterations=550) +# pars = out2[-2] +# reg_output.append(out2) -a=fig.add_subplot(2,3,6) +# a=fig.add_subplot(2,3,6) -textstr = out2[-1] +# textstr = out2[-1] -# these are matplotlib.patch.Patch properties -props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# place a text box in upper left in axes coords -a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, -         verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0],cmap="gray") +# # these are matplotlib.patch.Patch properties +# props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# # place a text box in upper left in axes coords +# a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +         # verticalalignment='top', bbox=props) +# imgplot = plt.imshow(reg_output[-1][0],cmap="gray")  plt.show()  | 
