/* ----------------------------------------------------------------------- Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp 2014-2015, CWI, Amsterdam Contact: astra@uantwerpen.be Website: http://sf.net/projects/astra-toolbox This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- $Id$ */ template void CParallelBeamStripKernelProjector2D::project(Policy& p) { if (dynamic_cast(m_pProjectionGeometry)) { projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(), 0, m_pProjectionGeometry->getDetectorCount(), p); } else if (dynamic_cast(m_pProjectionGeometry)) { projectBlock_internal_vector(0, m_pProjectionGeometry->getProjectionAngleCount(), 0, m_pProjectionGeometry->getDetectorCount(), p); } } template void CParallelBeamStripKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p) { if (dynamic_cast(m_pProjectionGeometry)) { projectBlock_internal(_iProjection, _iProjection + 1, 0, m_pProjectionGeometry->getDetectorCount(), p); } else if (dynamic_cast(m_pProjectionGeometry)) { projectBlock_internal_vector(_iProjection, _iProjection + 1, 0, m_pProjectionGeometry->getDetectorCount(), p); } } template void CParallelBeamStripKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p) { if (dynamic_cast(m_pProjectionGeometry)) { projectBlock_internal(_iProjection, _iProjection + 1, _iDetector, _iDetector + 1, p); } else if (dynamic_cast(m_pProjectionGeometry)) { projectBlock_internal_vector(_iProjection, _iProjection + 1, _iDetector, _iDetector + 1, p); } } //---------------------------------------------------------------------------------------- // PROJECT BLOCK template void CParallelBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p) { ASTRA_ASSERT(m_bIsInitialized); // Some variables float32 theta, t; int row, col; int iAngle; int iDetector; float32 res; float32 PL, PLimitL, PLimitR; float32 xL, xR, XLimitL, XLimitR; int x1L,x1R; float32 x2L, x2R, updateX; int iVolumeIndex, iRayIndex; float32 sin_theta, cos_theta, inv_sin_theta, inv_cos_theta; float32 fabs_sin_theta, fabs_cos_theta, fabs_inv_sin_theta, fabs_inv_cos_theta; float32 PW, PH, DW, inv_PW, inv_PH; float32 S, T, U, V, inv_4T; // loop angles for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) { // get values theta = m_pProjectionGeometry->getProjectionAngle(iAngle); bool switch_t = false; if (theta >= 7*PIdiv4) theta -= 2*PI; if (theta >= 3*PIdiv4) { theta -= PI; switch_t = true; } // Precalculate sin, cos, 1/cos sin_theta = sin(theta); cos_theta = cos(theta); inv_cos_theta = 1.0f / cos_theta; inv_sin_theta = 1.0f / sin_theta; fabs_sin_theta = (sin_theta < 0.0f) ? -sin_theta : sin_theta; fabs_cos_theta = (cos_theta < 0.0f) ? -cos_theta : cos_theta; fabs_inv_cos_theta = (inv_cos_theta < 0.0f) ? -inv_cos_theta : inv_cos_theta; fabs_inv_sin_theta = (inv_sin_theta < 0.0f) ? -inv_sin_theta : inv_sin_theta; // Other precalculations PW = m_pVolumeGeometry->getPixelLengthX(); PH = m_pVolumeGeometry->getPixelLengthY(); DW = m_pProjectionGeometry->getDetectorWidth(); inv_PW = 1.0f / PW; inv_PH = 1.0f / PH; // [-45?,45?] and [135?,225?] if (theta < PIdiv4) { // Precalculate kernel limits S = -0.5f * fabs_sin_theta * fabs_inv_cos_theta; T = -S; U = 1.0f + S; V = 1.0f - S; inv_4T = 0.25f / T; updateX = sin_theta * inv_cos_theta; // loop detectors for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; // get t t = m_pProjectionGeometry->indexToDetectorOffset(iDetector); if (switch_t) t = -t; // calculate left strip extremes (volume coordinates) PL = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0) - DW*0.5f) * inv_cos_theta; PLimitL = PL - 0.5f * fabs_sin_theta * fabs_inv_cos_theta * PH; PLimitR = PLimitL + DW * inv_cos_theta + PH * fabs_sin_theta * fabs_inv_cos_theta; // calculate strip extremes (pixel coordinates) XLimitL = (PLimitL - m_pVolumeGeometry->getWindowMinX()) * inv_PW; XLimitR = (PLimitR - m_pVolumeGeometry->getWindowMinX()) * inv_PW; xL = (PL - m_pVolumeGeometry->getWindowMinX()) * inv_PW; xR = xL + (DW * inv_cos_theta) * inv_PW; // for each row for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) { // get strip extremes in column indices x1L = int((XLimitL > 0.0f) ? XLimitL : XLimitL-1.0f); x1R = int((XLimitR > 0.0f) ? XLimitR : XLimitR-1.0f); // get coords w.r.t leftmost column hit by strip x2L = xL - x1L; x2R = xR - x1L; // update strip extremes for the next row XLimitL += updateX; XLimitR += updateX; xL += updateX; xR += updateX; // for each affected col for (col = x1L; col <= x1R; ++col) { if (col < 0 || col >= m_pVolumeGeometry->getGridColCount()) { x2L -= 1.0f; x2R -= 1.0f; continue; } iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col); // POLICY: PIXEL PRIOR if (!p.pixelPrior(iVolumeIndex)) { x2L -= 1.0f; x2R -= 1.0f; continue; } // right if (x2R >= V) res = 1.0f; else if (x2R > U) res = x2R - (x2R-U)*(x2R-U)*inv_4T; else if (x2R >= T) res = x2R; else if (x2R > S) res = (x2R-S)*(x2R-S) * inv_4T; else { x2L -= 1.0f; x2R -= 1.0f; continue; } // left if (x2L <= S) {} // - 0.0f else if (x2L < T) res -= (x2L-S)*(x2L-S) * inv_4T; else if (x2L <= U) res -= x2L; else if (x2L < V) res -= x2L - (x2L-U)*(x2L-U)*inv_4T; else { x2L -= 1.0f; x2R -= 1.0f; continue; } // POLICY: ADD p.addWeight(iRayIndex, iVolumeIndex, PW*PH * res); // POLICY: PIXEL POSTERIOR p.pixelPosterior(iVolumeIndex); x2L -= 1.0f; x2R -= 1.0f; } // end col loop } // end row loop // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } // end detector loop // [45?,135?] and [225?,315?] // horizontaly } else { // Precalculate kernel limits S = -0.5f * fabs_cos_theta * fabs_inv_sin_theta; T = -S; U = 1.0f + S; V = 1.0f - S; inv_4T = 0.25f / T; updateX = cos_theta * inv_sin_theta; // loop detectors for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; // get t t = m_pProjectionGeometry->indexToDetectorOffset(iDetector); if (switch_t) t = -t; // calculate left strip extremes (volume coordinates) PL = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0) + DW*0.5f) * inv_sin_theta; PLimitL = PL + 0.5f * fabs_cos_theta * fabs_inv_sin_theta * PW; PLimitR = PLimitL - DW * inv_sin_theta - PH * fabs_cos_theta * fabs_inv_sin_theta; // calculate strip extremes (pixel coordinates) XLimitL = (m_pVolumeGeometry->getWindowMaxY() - PLimitL) * inv_PH; XLimitR = (m_pVolumeGeometry->getWindowMaxY() - PLimitR) * inv_PH; xL = (m_pVolumeGeometry->getWindowMaxY() - PL) * inv_PH; xR = xL + (DW * fabs_inv_sin_theta) * inv_PH; // for each col for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) { // get strip extremes in column indices x1L = int((XLimitL > 0.0f) ? XLimitL : XLimitL-1.0f); x1R = int((XLimitR > 0.0f) ? XLimitR : XLimitR-1.0f); // get coords w.r.t leftmost column hit by strip x2L = xL - x1L; x2R = xR - x1L; // update strip extremes for the next row XLimitL += updateX; XLimitR += updateX; xL += updateX; xR += updateX; // for each affected col for (row = x1L; row <= x1R; ++row) { if (row < 0 || row >= m_pVolumeGeometry->getGridRowCount()) { x2L -= 1.0f; x2R -= 1.0f; continue; } iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col); // POLICY: PIXEL PRIOR if (!p.pixelPrior(iVolumeIndex)) { x2L -= 1.0f; x2R -= 1.0f; continue; } // right if (x2R >= V) res = 1.0f; else if (x2R > U) res = x2R - (x2R-U)*(x2R-U)*inv_4T; else if (x2R >= T) res = x2R; else if (x2R > S) res = (x2R-S)*(x2R-S) * inv_4T; else { x2L -= 1.0f; x2R -= 1.0f; continue; } // left if (x2L <= S) {} // - 0.0f else if (x2L < T) res -= (x2L-S)*(x2L-S) * inv_4T; else if (x2L <= U) res -= x2L; else if (x2L < V) res -= x2L - (x2L-U)*(x2L-U)*inv_4T; else { x2L -= 1.0f; x2R -= 1.0f; continue; } // POLICY: ADD p.addWeight(iRayIndex, iVolumeIndex, PW*PH * res); // POLICY: PIXEL POSTERIOR p.pixelPosterior(iVolumeIndex); x2L -= 1.0f; x2R -= 1.0f; } // end row loop } // end col loop // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } // end detector loop } // end theta switch } // end angle loop } //---------------------------------------------------------------------------------------- // PROJECT BLOCK - vector projection geometry template void CParallelBeamStripKernelProjector2D::projectBlock_internal_vector(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p) { // variables float32 detX, detY, detLX, detLY, detRX, detRY, S, T, update_c, update_r, offsetL, offsetR, invTminS; float32 lengthPerRow, lengthPerCol, inv_pixelLengthX, inv_pixelLengthY, pixelArea; int iVolumeIndex, iRayIndex, iRayIndexL, iRayIndexR, row, row_top, row_bottom, col, col_left, col_right, iAngle, iDetector, colCount, rowCount; const SParProjection * proj = 0; const CParallelVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry); inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX(); inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY(); pixelArea = m_pVolumeGeometry->getPixelLengthX() * m_pVolumeGeometry->getPixelLengthY(); colCount = m_pVolumeGeometry->getGridColCount(); rowCount = m_pVolumeGeometry->getGridRowCount(); // loop angles for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) { proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle]; bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY); if (vertical) { S = 0.5f - 0.5f*fabs(proj->fRayX/proj->fRayY); T = 0.5f + 0.5f*fabs(proj->fRayX/proj->fRayY); update_c = -m_pVolumeGeometry->getPixelLengthY() * (proj->fRayX/proj->fRayY) * inv_pixelLengthX; invTminS = 1.0f / (T-S); } else { S = 0.5f - 0.5f*fabs(proj->fRayY/proj->fRayX); T = 0.5f + 0.5f*fabs(proj->fRayY/proj->fRayX); update_r = -m_pVolumeGeometry->getPixelLengthX() * (proj->fRayY/proj->fRayX) * inv_pixelLengthY; invTminS = 1.0f / (T-S); } // loop detectors for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; detLX = proj->fDetSX + (iDetector+0.0f) * proj->fDetUX; detLY = proj->fDetSY + (iDetector+0.0f) * proj->fDetUY; detRX = detLX + proj->fDetUX; detRY = detLY + proj->fDetUY; // vertically if (vertical) { // calculate cL and cR for row 0 float32 xL = detLX + (proj->fRayX/proj->fRayY)*(m_pVolumeGeometry->pixelRowToCenterY(0)-detLY); float32 cL = (xL - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX - 0.5f; float32 xR = detRX + (proj->fRayX/proj->fRayY)*(m_pVolumeGeometry->pixelRowToCenterY(0)-detRY); float32 cR = (xR - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX - 0.5f; if (cR < cL) { float32 tmp = cL; cL = cR; cR = tmp; } // for each row for (row = 0; row < rowCount; ++row, cL += update_c, cR += update_c) { col_left = int(cL-0.5f+S); col_right = int(cR+1.5-S); if (col_left < 0) col_left = 0; if (col_right > colCount-1) col_right = colCount-1; // for each column for (col = col_left; col <= col_right; ++col) { iVolumeIndex = row * colCount + col; // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { offsetL = cL - float32(col); offsetR = cR - float32(col); // right ray edge float32 res = 0.0f; if (T <= offsetR) res = 1.0f; else if (S < offsetR) res = 1.0f - 0.5f*(T-offsetR)*(T-offsetR)*invTminS; else if (-S < offsetR) res = 0.5f + offsetR; else if (-T < offsetR) res = 0.5f*(offsetR+T)*(offsetR+T)*invTminS; // left ray edge if (T <= offsetL) res -= 1.0f; else if (S < offsetL) res -= 1.0f - 0.5f*(T-offsetL)*(T-offsetL)*invTminS; else if (-S < offsetL) res -= 0.5f + offsetL; else if (-T < offsetL) res -= 0.5f*(offsetL+T)*(offsetL+T)*invTminS; p.addWeight(iRayIndex, iVolumeIndex, pixelArea*res); p.pixelPosterior(iVolumeIndex); } } } } // horizontally else { // calculate rL and rR for row 0 float32 yL = detLY + (proj->fRayY/proj->fRayX)*(m_pVolumeGeometry->pixelColToCenterX(0)-detLX); float32 rL = (m_pVolumeGeometry->getWindowMaxY() - yL) * inv_pixelLengthY - 0.5f; float32 yR = detRY + (proj->fRayY/proj->fRayX)*(m_pVolumeGeometry->pixelColToCenterX(0)-detRX); float32 rR = (m_pVolumeGeometry->getWindowMaxY() - yR) * inv_pixelLengthY - 0.5f; if (rR < rL) { float32 tmp = rL; rL = rR; rR = tmp; } // for each column for (col = 0; col < colCount; ++col, rL += update_r, rR += update_r) { row_top = int(rL-0.5f+S); row_bottom = int(rR+1.5-S); if (row_top < 0) row_top = 0; if (row_bottom > rowCount-1) row_bottom = rowCount-1; // for each row for (row = row_top; row <= row_bottom; ++row) { iVolumeIndex = row * colCount + col; // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { offsetL = rL - float32(row); offsetR = rR - float32(row); // right ray edge float32 res = 0.0f; if (T <= offsetR) res = 1.0f; else if (S < offsetR) res = 1.0f - 0.5f*(T-offsetR)*(T-offsetR)*invTminS; else if (-S < offsetR) res = 0.5f + offsetR; else if (-T < offsetR) res = 0.5f*(offsetR+T)*(offsetR+T)*invTminS; // left ray edge if (T <= offsetL) res -= 1.0f; else if (S < offsetL) res -= 1.0f - 0.5f*(T-offsetL)*(T-offsetL)*invTminS; else if (-S < offsetL) res -= 0.5f + offsetL; else if (-T < offsetL) res -= 0.5f*(offsetL+T)*(offsetL+T)*invTminS; p.addWeight(iRayIndex, iVolumeIndex, pixelArea*res); p.pixelPosterior(iVolumeIndex); } } } } // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } // end loop detector } // end loop angles }