/*
-----------------------------------------------------------------------
Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp
2014-2016, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
*/
#include
#include
#include
#include
#include
#include "util3d.h"
#ifdef STANDALONE
#include "par3d_fp.h"
#include "testutil.h"
#endif
#include "dims3d.h"
typedef texture texture3D;
static texture3D gT_par3DProjTexture;
namespace astraCUDA3d {
#define ZSIZE 6
static const unsigned int g_volBlockZ = ZSIZE;
static const unsigned int g_anglesPerBlock = 32;
static const unsigned int g_volBlockX = 16;
static const unsigned int g_volBlockY = 32;
static const unsigned g_MaxAngles = 1024;
__constant__ float gC_C[8*g_MaxAngles];
static bool bindProjDataTexture(const cudaArray* array)
{
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc();
gT_par3DProjTexture.addressMode[0] = cudaAddressModeBorder;
gT_par3DProjTexture.addressMode[1] = cudaAddressModeBorder;
gT_par3DProjTexture.addressMode[2] = cudaAddressModeBorder;
gT_par3DProjTexture.filterMode = cudaFilterModeLinear;
gT_par3DProjTexture.normalized = false;
cudaBindTextureToArray(gT_par3DProjTexture, array, channelDesc);
// TODO: error value?
return true;
}
__global__ void dev_par3D_BP(void* D_volData, unsigned int volPitch, int startAngle, int angleOffset, const SDimensions3D dims, float fOutputScale)
{
float* volData = (float*)D_volData;
int endAngle = startAngle + g_anglesPerBlock;
if (endAngle > dims.iProjAngles - angleOffset)
endAngle = dims.iProjAngles - angleOffset;
// threadIdx: x = rel x
// y = rel y
// blockIdx: x = x + y
// y = z
const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x;
const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y;
if (X >= dims.iVolX)
return;
if (Y >= dims.iVolY)
return;
const int startZ = blockIdx.y * g_volBlockZ;
float fX = X - 0.5f*dims.iVolX + 0.5f;
float fY = Y - 0.5f*dims.iVolY + 0.5f;
float fZ = startZ - 0.5f*dims.iVolZ + 0.5f;
float Z[ZSIZE];
for(int i=0; i < ZSIZE; i++)
Z[i] = 0.0f;
{
float fAngle = startAngle + angleOffset + 0.5f;
for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f)
{
float4 fCu = make_float4(gC_C[8*angle+0], gC_C[8*angle+1], gC_C[8*angle+2], gC_C[8*angle+3]);
float4 fCv = make_float4(gC_C[8*angle+4], gC_C[8*angle+5], gC_C[8*angle+6], gC_C[8*angle+7]);
float fU = fCu.w + fX * fCu.x + fY * fCu.y + fZ * fCu.z;
float fV = fCv.w + fX * fCv.x + fY * fCv.y + fZ * fCv.z;
for (int idx = 0; idx < ZSIZE; ++idx) {
float fVal = tex3D(gT_par3DProjTexture, fU, fAngle, fV);
Z[idx] += fVal;
fU += fCu.z;
fV += fCv.z;
}
}
}
int endZ = ZSIZE;
if (endZ > dims.iVolZ - startZ)
endZ = dims.iVolZ - startZ;
for(int i=0; i < endZ; i++)
volData[((startZ+i)*dims.iVolY+Y)*volPitch+X] += Z[i] * fOutputScale;
}
// supersampling version
__global__ void dev_par3D_BP_SS(void* D_volData, unsigned int volPitch, int startAngle, int angleOffset, const SDimensions3D dims, int iRaysPerVoxelDim, float fOutputScale)
{
float* volData = (float*)D_volData;
int endAngle = startAngle + g_anglesPerBlock;
if (endAngle > dims.iProjAngles - angleOffset)
endAngle = dims.iProjAngles - angleOffset;
// threadIdx: x = rel x
// y = rel y
// blockIdx: x = x + y
// y = z
// TO TRY: precompute part of detector intersection formulas in shared mem?
// TO TRY: inner loop over z, gather ray values in shared mem
const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x;
const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y;
if (X >= dims.iVolX)
return;
if (Y >= dims.iVolY)
return;
const int startZ = blockIdx.y * g_volBlockZ;
int endZ = startZ + g_volBlockZ;
if (endZ > dims.iVolZ)
endZ = dims.iVolZ;
float fX = X - 0.5f*dims.iVolX + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim;
float fY = Y - 0.5f*dims.iVolY + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim;
float fZ = startZ - 0.5f*dims.iVolZ + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim;
const float fSubStep = 1.0f/iRaysPerVoxelDim;
fOutputScale /= (iRaysPerVoxelDim*iRaysPerVoxelDim*iRaysPerVoxelDim);
for (int Z = startZ; Z < endZ; ++Z, fZ += 1.0f)
{
float fVal = 0.0f;
float fAngle = startAngle + angleOffset + 0.5f;
for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f)
{
const float fCux = gC_C[8*angle+0];
const float fCuy = gC_C[8*angle+1];
const float fCuz = gC_C[8*angle+2];
const float fCuc = gC_C[8*angle+3];
const float fCvx = gC_C[8*angle+4];
const float fCvy = gC_C[8*angle+5];
const float fCvz = gC_C[8*angle+6];
const float fCvc = gC_C[8*angle+7];
float fXs = fX;
for (int iSubX = 0; iSubX < iRaysPerVoxelDim; ++iSubX) {
float fYs = fY;
for (int iSubY = 0; iSubY < iRaysPerVoxelDim; ++iSubY) {
float fZs = fZ;
for (int iSubZ = 0; iSubZ < iRaysPerVoxelDim; ++iSubZ) {
const float fU = fCuc + fXs * fCux + fYs * fCuy + fZs * fCuz;
const float fV = fCvc + fXs * fCvx + fYs * fCvy + fZs * fCvz;
fVal += tex3D(gT_par3DProjTexture, fU, fAngle, fV);
fZs += fSubStep;
}
fYs += fSubStep;
}
fXs += fSubStep;
}
}
volData[(Z*dims.iVolY+Y)*volPitch+X] += fVal * fOutputScale;
}
}
bool Par3DBP_Array(cudaPitchedPtr D_volumeData,
cudaArray *D_projArray,
const SDimensions3D& dims, const SPar3DProjection* angles,
const SProjectorParams3D& params)
{
bindProjDataTexture(D_projArray);
float fOutputScale = params.fOutputScale * params.fVolScaleX * params.fVolScaleY * params.fVolScaleZ;
for (unsigned int th = 0; th < dims.iProjAngles; th += g_MaxAngles) {
unsigned int angleCount = g_MaxAngles;
if (th + angleCount > dims.iProjAngles)
angleCount = dims.iProjAngles - th;
// transfer angles to constant memory
float* tmp = new float[8*dims.iProjAngles];
// NB: We increment angles at the end of the loop body.
// TODO: Use functions from dims3d.cu for this:
#define TRANSFER_TO_CONSTANT(expr,name) do { for (unsigned int i = 0; i < angleCount; ++i) tmp[8*i + name] = (expr) ; } while (0)
#define DENOM (angles[i].fRayX*angles[i].fDetUY*angles[i].fDetVZ - angles[i].fRayX*angles[i].fDetUZ*angles[i].fDetVY - angles[i].fRayY*angles[i].fDetUX*angles[i].fDetVZ + angles[i].fRayY*angles[i].fDetUZ*angles[i].fDetVX + angles[i].fRayZ*angles[i].fDetUX*angles[i].fDetVY - angles[i].fRayZ*angles[i].fDetUY*angles[i].fDetVX)
TRANSFER_TO_CONSTANT( ( - (angles[i].fRayY*angles[i].fDetVZ - angles[i].fRayZ*angles[i].fDetVY)) / DENOM , 0 );
TRANSFER_TO_CONSTANT( ( (angles[i].fRayX*angles[i].fDetVZ - angles[i].fRayZ*angles[i].fDetVX)) / DENOM , 1 );
TRANSFER_TO_CONSTANT( (- (angles[i].fRayX*angles[i].fDetVY - angles[i].fRayY*angles[i].fDetVX) ) / DENOM , 2 );
TRANSFER_TO_CONSTANT( (-(angles[i].fDetSY*angles[i].fDetVZ - angles[i].fDetSZ*angles[i].fDetVY)*angles[i].fRayX + (angles[i].fRayY*angles[i].fDetVZ - angles[i].fRayZ*angles[i].fDetVY)*angles[i].fDetSX - (angles[i].fRayY*angles[i].fDetSZ - angles[i].fRayZ*angles[i].fDetSY)*angles[i].fDetVX) / DENOM , 3 );
TRANSFER_TO_CONSTANT( ((angles[i].fRayY*angles[i].fDetUZ - angles[i].fRayZ*angles[i].fDetUY) ) / DENOM , 4 );
TRANSFER_TO_CONSTANT( (- (angles[i].fRayX*angles[i].fDetUZ - angles[i].fRayZ*angles[i].fDetUX) ) / DENOM , 5 );
TRANSFER_TO_CONSTANT( ((angles[i].fRayX*angles[i].fDetUY - angles[i].fRayY*angles[i].fDetUX) ) / DENOM , 6 );
TRANSFER_TO_CONSTANT( ((angles[i].fDetSY*angles[i].fDetUZ - angles[i].fDetSZ*angles[i].fDetUY)*angles[i].fRayX - (angles[i].fRayY*angles[i].fDetUZ - angles[i].fRayZ*angles[i].fDetUY)*angles[i].fDetSX + (angles[i].fRayY*angles[i].fDetSZ - angles[i].fRayZ*angles[i].fDetSY)*angles[i].fDetUX ) / DENOM , 7 );
#undef TRANSFER_TO_CONSTANT
#undef DENOM
cudaMemcpyToSymbol(gC_C, tmp, angleCount*8*sizeof(float), 0, cudaMemcpyHostToDevice);
delete[] tmp;
dim3 dimBlock(g_volBlockX, g_volBlockY);
dim3 dimGrid(((dims.iVolX+g_volBlockX-1)/g_volBlockX)*((dims.iVolY+g_volBlockY-1)/g_volBlockY), (dims.iVolZ+g_volBlockZ-1)/g_volBlockZ);
// timeval t;
// tic(t);
for (unsigned int i = 0; i < angleCount; i += g_anglesPerBlock) {
// printf("Calling BP: %d, %dx%d, %dx%d to %p\n", i, dimBlock.x, dimBlock.y, dimGrid.x, dimGrid.y, (void*)D_volumeData.ptr);
if (params.iRaysPerVoxelDim == 1)
dev_par3D_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), i, th, dims, fOutputScale);
else
dev_par3D_BP_SS<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), i, th, dims, params.iRaysPerVoxelDim, fOutputScale);
}
cudaTextForceKernelsCompletion();
angles = angles + angleCount;
// printf("%f\n", toc(t));
}
return true;
}
bool Par3DBP(cudaPitchedPtr D_volumeData,
cudaPitchedPtr D_projData,
const SDimensions3D& dims, const SPar3DProjection* angles,
const SProjectorParams3D& params)
{
// transfer projections to array
cudaArray* cuArray = allocateProjectionArray(dims);
transferProjectionsToArray(D_projData, cuArray, dims);
bool ret = Par3DBP_Array(D_volumeData, cuArray, dims, angles, params);
cudaFreeArray(cuArray);
return ret;
}
}
#ifdef STANDALONE
int main()
{
SDimensions3D dims;
dims.iVolX = 256;
dims.iVolY = 256;
dims.iVolZ = 256;
dims.iProjAngles = 180;
dims.iProjU = 512;
dims.iProjV = 512;
dims.iRaysPerDet = 1;
cudaExtent extentV;
extentV.width = dims.iVolX*sizeof(float);
extentV.height = dims.iVolY;
extentV.depth = dims.iVolZ;
cudaPitchedPtr volData; // pitch, ptr, xsize, ysize
cudaMalloc3D(&volData, extentV);
cudaExtent extentP;
extentP.width = dims.iProjU*sizeof(float);
extentP.height = dims.iProjAngles;
extentP.depth = dims.iProjV;
cudaPitchedPtr projData; // pitch, ptr, xsize, ysize
cudaMalloc3D(&projData, extentP);
cudaMemset3D(projData, 0, extentP);
float* slice = new float[256*256];
cudaPitchedPtr ptr;
ptr.ptr = slice;
ptr.pitch = 256*sizeof(float);
ptr.xsize = 256*sizeof(float);
ptr.ysize = 256;
for (unsigned int i = 0; i < 256*256; ++i)
slice[i] = 1.0f;
for (unsigned int i = 0; i < 256; ++i) {
cudaExtent extentS;
extentS.width = dims.iVolX*sizeof(float);
extentS.height = dims.iVolY;
extentS.depth = 1;
cudaPos sp = { 0, 0, 0 };
cudaPos dp = { 0, 0, i };
cudaMemcpy3DParms p;
p.srcArray = 0;
p.srcPos = sp;
p.srcPtr = ptr;
p.dstArray = 0;
p.dstPos = dp;
p.dstPtr = volData;
p.extent = extentS;
p.kind = cudaMemcpyHostToDevice;
cudaMemcpy3D(&p);
#if 0
if (i == 128) {
for (unsigned int j = 0; j < 256*256; ++j)
slice[j] = 0.0f;
}
#endif
}
SPar3DProjection angle[180];
angle[0].fRayX = 1;
angle[0].fRayY = 0;
angle[0].fRayZ = 0;
angle[0].fDetSX = 512;
angle[0].fDetSY = -256;
angle[0].fDetSZ = -256;
angle[0].fDetUX = 0;
angle[0].fDetUY = 1;
angle[0].fDetUZ = 0;
angle[0].fDetVX = 0;
angle[0].fDetVY = 0;
angle[0].fDetVZ = 1;
#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0)
for (int i = 1; i < 180; ++i) {
angle[i] = angle[0];
ROTATE0(Ray, i, i*2*M_PI/180);
ROTATE0(DetS, i, i*2*M_PI/180);
ROTATE0(DetU, i, i*2*M_PI/180);
ROTATE0(DetV, i, i*2*M_PI/180);
}
#undef ROTATE0
astraCUDA3d::Par3DFP(volData, projData, dims, angle, 1.0f);
#if 1
float* bufs = new float[180*512];
for (int i = 0; i < 512; ++i) {
cudaMemcpy(bufs, ((float*)projData.ptr)+180*512*i, 180*512*sizeof(float), cudaMemcpyDeviceToHost);
printf("%d %d %d\n", projData.pitch, projData.xsize, projData.ysize);
char fname[20];
sprintf(fname, "sino%03d.png", i);
saveImage(fname, 180, 512, bufs, 0, 512);
}
float* bufp = new float[512*512];
for (int i = 0; i < 180; ++i) {
for (int j = 0; j < 512; ++j) {
cudaMemcpy(bufp+512*j, ((float*)projData.ptr)+180*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost);
}
char fname[20];
sprintf(fname, "proj%03d.png", i);
saveImage(fname, 512, 512, bufp, 0, 512);
}
#endif
for (unsigned int i = 0; i < 256*256; ++i)
slice[i] = 0.0f;
for (unsigned int i = 0; i < 256; ++i) {
cudaExtent extentS;
extentS.width = dims.iVolX*sizeof(float);
extentS.height = dims.iVolY;
extentS.depth = 1;
cudaPos sp = { 0, 0, 0 };
cudaPos dp = { 0, 0, i };
cudaMemcpy3DParms p;
p.srcArray = 0;
p.srcPos = sp;
p.srcPtr = ptr;
p.dstArray = 0;
p.dstPos = dp;
p.dstPtr = volData;
p.extent = extentS;
p.kind = cudaMemcpyHostToDevice;
cudaMemcpy3D(&p);
}
astraCUDA3d::Par3DBP(volData, projData, dims, angle, 1.0f);
#if 1
float* buf = new float[256*256];
for (int i = 0; i < 256; ++i) {
cudaMemcpy(buf, ((float*)volData.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost);
printf("%d %d %d\n", volData.pitch, volData.xsize, volData.ysize);
char fname[20];
sprintf(fname, "vol%03d.png", i);
saveImage(fname, 256, 256, buf, 0, 60000);
}
#endif
}
#endif