/*
-----------------------------------------------------------------------
Copyright: 2010-2018, imec Vision Lab, University of Antwerp
2014-2018, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
*/
#include "astra/cuda/3d/util3d.h"
#include "astra/cuda/3d/dims3d.h"
#include
#include
#include
#include
#include
typedef texture texture3D;
static texture3D gT_par3DProjTexture;
namespace astraCUDA3d {
#define ZSIZE 6
static const unsigned int g_volBlockZ = ZSIZE;
static const unsigned int g_anglesPerBlock = 32;
static const unsigned int g_volBlockX = 16;
static const unsigned int g_volBlockY = 32;
static const unsigned g_MaxAngles = 1024;
struct DevPar3DParams {
float4 fNumU;
float4 fNumV;
};
__constant__ DevPar3DParams gC_C[g_MaxAngles];
__constant__ float gC_scale[g_MaxAngles];
static bool bindProjDataTexture(const cudaArray* array)
{
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc();
gT_par3DProjTexture.addressMode[0] = cudaAddressModeBorder;
gT_par3DProjTexture.addressMode[1] = cudaAddressModeBorder;
gT_par3DProjTexture.addressMode[2] = cudaAddressModeBorder;
gT_par3DProjTexture.filterMode = cudaFilterModeLinear;
gT_par3DProjTexture.normalized = false;
cudaBindTextureToArray(gT_par3DProjTexture, array, channelDesc);
// TODO: error value?
return true;
}
__global__ void dev_par3D_BP(void* D_volData, unsigned int volPitch, int startAngle, int angleOffset, const SDimensions3D dims, float fOutputScale)
{
float* volData = (float*)D_volData;
int endAngle = startAngle + g_anglesPerBlock;
if (endAngle > dims.iProjAngles - angleOffset)
endAngle = dims.iProjAngles - angleOffset;
// threadIdx: x = rel x
// y = rel y
// blockIdx: x = x + y
// y = z
const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x;
const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y;
if (X >= dims.iVolX)
return;
if (Y >= dims.iVolY)
return;
const int startZ = blockIdx.y * g_volBlockZ;
float fX = X - 0.5f*dims.iVolX + 0.5f;
float fY = Y - 0.5f*dims.iVolY + 0.5f;
float fZ = startZ - 0.5f*dims.iVolZ + 0.5f;
float Z[ZSIZE];
for(int i=0; i < ZSIZE; i++)
Z[i] = 0.0f;
{
float fAngle = startAngle + angleOffset + 0.5f;
for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f)
{
float4 fCu = gC_C[angle].fNumU;
float4 fCv = gC_C[angle].fNumV;
float fS = gC_scale[angle];
float fU = fCu.w + fX * fCu.x + fY * fCu.y + fZ * fCu.z;
float fV = fCv.w + fX * fCv.x + fY * fCv.y + fZ * fCv.z;
for (int idx = 0; idx < ZSIZE; ++idx) {
float fVal = tex3D(gT_par3DProjTexture, fU, fAngle, fV);
Z[idx] += fVal * fS;
fU += fCu.z;
fV += fCv.z;
}
}
}
int endZ = ZSIZE;
if (endZ > dims.iVolZ - startZ)
endZ = dims.iVolZ - startZ;
for(int i=0; i < endZ; i++)
volData[((startZ+i)*dims.iVolY+Y)*volPitch+X] += Z[i] * fOutputScale;
}
// supersampling version
__global__ void dev_par3D_BP_SS(void* D_volData, unsigned int volPitch, int startAngle, int angleOffset, const SDimensions3D dims, int iRaysPerVoxelDim, float fOutputScale)
{
float* volData = (float*)D_volData;
int endAngle = startAngle + g_anglesPerBlock;
if (endAngle > dims.iProjAngles - angleOffset)
endAngle = dims.iProjAngles - angleOffset;
// threadIdx: x = rel x
// y = rel y
// blockIdx: x = x + y
// y = z
// TO TRY: precompute part of detector intersection formulas in shared mem?
// TO TRY: inner loop over z, gather ray values in shared mem
const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x;
const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y;
if (X >= dims.iVolX)
return;
if (Y >= dims.iVolY)
return;
const int startZ = blockIdx.y * g_volBlockZ;
int endZ = startZ + g_volBlockZ;
if (endZ > dims.iVolZ)
endZ = dims.iVolZ;
float fX = X - 0.5f*dims.iVolX + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim;
float fY = Y - 0.5f*dims.iVolY + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim;
float fZ = startZ - 0.5f*dims.iVolZ + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim;
const float fSubStep = 1.0f/iRaysPerVoxelDim;
fOutputScale /= (iRaysPerVoxelDim*iRaysPerVoxelDim*iRaysPerVoxelDim);
for (int Z = startZ; Z < endZ; ++Z, fZ += 1.0f)
{
float fVal = 0.0f;
float fAngle = startAngle + angleOffset + 0.5f;
for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f)
{
float4 fCu = gC_C[angle].fNumU;
float4 fCv = gC_C[angle].fNumV;
float fS = gC_scale[angle];
float fXs = fX;
for (int iSubX = 0; iSubX < iRaysPerVoxelDim; ++iSubX) {
float fYs = fY;
for (int iSubY = 0; iSubY < iRaysPerVoxelDim; ++iSubY) {
float fZs = fZ;
for (int iSubZ = 0; iSubZ < iRaysPerVoxelDim; ++iSubZ) {
const float fU = fCu.w + fXs * fCu.x + fYs * fCu.y + fZs * fCu.z;
const float fV = fCv.w + fXs * fCv.x + fYs * fCv.y + fZs * fCv.z;
fVal += tex3D(gT_par3DProjTexture, fU, fAngle, fV) * fS;
fZs += fSubStep;
}
fYs += fSubStep;
}
fXs += fSubStep;
}
}
volData[(Z*dims.iVolY+Y)*volPitch+X] += fVal * fOutputScale;
}
}
bool transferConstants(const SPar3DProjection* angles, unsigned int iProjAngles, const SProjectorParams3D& params)
{
DevPar3DParams *p = new DevPar3DParams[iProjAngles];
float *s = new float[iProjAngles];
for (unsigned int i = 0; i < iProjAngles; ++i) {
Vec3 u(angles[i].fDetUX, angles[i].fDetUY, angles[i].fDetUZ);
Vec3 v(angles[i].fDetVX, angles[i].fDetVY, angles[i].fDetVZ);
Vec3 r(angles[i].fRayX, angles[i].fRayY, angles[i].fRayZ);
Vec3 d(angles[i].fDetSX, angles[i].fDetSY, angles[i].fDetSZ);
double fDen = det3(r,u,v);
p[i].fNumU.x = -det3x(r,v) / fDen;
p[i].fNumU.y = -det3y(r,v) / fDen;
p[i].fNumU.z = -det3z(r,v) / fDen;
p[i].fNumU.w = -det3(r,d,v) / fDen;
p[i].fNumV.x = det3x(r,u) / fDen;
p[i].fNumV.y = det3y(r,u) / fDen;
p[i].fNumV.z = det3z(r,u) / fDen;
p[i].fNumV.w = det3(r,d,u) / fDen;
s[i] = 1.0 / scaled_cross3(u,v,Vec3(params.fVolScaleX,params.fVolScaleY,params.fVolScaleZ)).norm();
}
cudaMemcpyToSymbol(gC_C, p, iProjAngles*sizeof(DevPar3DParams), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(gC_scale, s, iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
delete[] p;
delete[] s;
return true;
}
bool Par3DBP_Array(cudaPitchedPtr D_volumeData,
cudaArray *D_projArray,
const SDimensions3D& dims, const SPar3DProjection* angles,
const SProjectorParams3D& params)
{
bindProjDataTexture(D_projArray);
float fOutputScale = params.fOutputScale * params.fVolScaleX * params.fVolScaleY * params.fVolScaleZ;
for (unsigned int th = 0; th < dims.iProjAngles; th += g_MaxAngles) {
unsigned int angleCount = g_MaxAngles;
if (th + angleCount > dims.iProjAngles)
angleCount = dims.iProjAngles - th;
bool ok = transferConstants(angles, dims.iProjAngles, params);
if (!ok)
return false;
dim3 dimBlock(g_volBlockX, g_volBlockY);
dim3 dimGrid(((dims.iVolX+g_volBlockX-1)/g_volBlockX)*((dims.iVolY+g_volBlockY-1)/g_volBlockY), (dims.iVolZ+g_volBlockZ-1)/g_volBlockZ);
// timeval t;
// tic(t);
for (unsigned int i = 0; i < angleCount; i += g_anglesPerBlock) {
// printf("Calling BP: %d, %dx%d, %dx%d to %p\n", i, dimBlock.x, dimBlock.y, dimGrid.x, dimGrid.y, (void*)D_volumeData.ptr);
if (params.iRaysPerVoxelDim == 1)
dev_par3D_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), i, th, dims, fOutputScale);
else
dev_par3D_BP_SS<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), i, th, dims, params.iRaysPerVoxelDim, fOutputScale);
}
cudaTextForceKernelsCompletion();
angles = angles + angleCount;
// printf("%f\n", toc(t));
}
return true;
}
bool Par3DBP(cudaPitchedPtr D_volumeData,
cudaPitchedPtr D_projData,
const SDimensions3D& dims, const SPar3DProjection* angles,
const SProjectorParams3D& params)
{
// transfer projections to array
cudaArray* cuArray = allocateProjectionArray(dims);
transferProjectionsToArray(D_projData, cuArray, dims);
bool ret = Par3DBP_Array(D_volumeData, cuArray, dims, angles, params);
cudaFreeArray(cuArray);
return ret;
}
}