summaryrefslogtreecommitdiffstats
path: root/cuda/2d/par_bp.cu
diff options
context:
space:
mode:
Diffstat (limited to 'cuda/2d/par_bp.cu')
-rw-r--r--cuda/2d/par_bp.cu357
1 files changed, 357 insertions, 0 deletions
diff --git a/cuda/2d/par_bp.cu b/cuda/2d/par_bp.cu
new file mode 100644
index 0000000..1057879
--- /dev/null
+++ b/cuda/2d/par_bp.cu
@@ -0,0 +1,357 @@
+/*
+-----------------------------------------------------------------------
+Copyright 2012 iMinds-Vision Lab, University of Antwerp
+
+Contact: astra@ua.ac.be
+Website: http://astra.ua.ac.be
+
+
+This file is part of the
+All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
+
+The ASTRA Toolbox is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+The ASTRA Toolbox is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
+
+-----------------------------------------------------------------------
+$Id$
+*/
+
+#include <cstdio>
+#include <cassert>
+#include <iostream>
+
+#include "util.h"
+#include "arith.h"
+
+#ifdef STANDALONE
+#include "testutil.h"
+#endif
+
+#define PIXELTRACE
+
+
+typedef texture<float, 2, cudaReadModeElementType> texture2D;
+
+static texture2D gT_projTexture;
+
+
+namespace astraCUDA {
+
+const unsigned int g_anglesPerBlock = 16;
+const unsigned int g_blockSliceSize = 32;
+const unsigned int g_blockSlices = 16;
+
+const unsigned int g_MaxAngles = 2560;
+
+__constant__ float gC_angle_sin[g_MaxAngles];
+__constant__ float gC_angle_cos[g_MaxAngles];
+__constant__ float gC_angle_offset[g_MaxAngles];
+
+static bool bindProjDataTexture(float* data, unsigned int pitch, unsigned int width, unsigned int height)
+{
+ cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();
+
+ gT_projTexture.addressMode[0] = cudaAddressModeClamp;
+ gT_projTexture.addressMode[1] = cudaAddressModeClamp;
+ gT_projTexture.filterMode = cudaFilterModeLinear;
+ gT_projTexture.normalized = false;
+
+ cudaBindTexture2D(0, gT_projTexture, (const void*)data, channelDesc, width, height, sizeof(float)*pitch);
+
+ // TODO: error value?
+
+ return true;
+}
+
+__global__ void devBP(float* D_volData, unsigned int volPitch, unsigned int startAngle, bool offsets, const SDimensions dims)
+{
+ const int relX = threadIdx.x;
+ const int relY = threadIdx.y;
+
+ int endAngle = startAngle + g_anglesPerBlock;
+ if (endAngle > dims.iProjAngles)
+ endAngle = dims.iProjAngles;
+ const int X = blockIdx.x * g_blockSlices + relX;
+ const int Y = blockIdx.y * g_blockSliceSize + relY;
+
+ if (X >= dims.iVolWidth || Y >= dims.iVolHeight)
+ return;
+
+ const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f ) / dims.fDetScale;
+ const float fY = ( Y - 0.5f*dims.iVolHeight + 0.5f ) / dims.fDetScale;
+
+ float* volData = (float*)D_volData;
+
+ float fVal = 0.0f;
+ float fA = startAngle + 0.5f;
+ const float fT_base = 0.5f*dims.iProjDets - 0.5f + 1.5f;
+
+ if (offsets) {
+
+ for (int angle = startAngle; angle < endAngle; ++angle)
+ {
+ const float cos_theta = gC_angle_cos[angle];
+ const float sin_theta = gC_angle_sin[angle];
+ const float TOffset = gC_angle_offset[angle];
+
+ const float fT = fT_base + fX * cos_theta - fY * sin_theta + TOffset;
+ fVal += tex2D(gT_projTexture, fT, fA);
+ fA += 1.0f;
+ }
+
+ } else {
+
+ for (int angle = startAngle; angle < endAngle; ++angle)
+ {
+ const float cos_theta = gC_angle_cos[angle];
+ const float sin_theta = gC_angle_sin[angle];
+
+ const float fT = fT_base + fX * cos_theta - fY * sin_theta;
+ fVal += tex2D(gT_projTexture, fT, fA);
+ fA += 1.0f;
+ }
+
+ }
+
+ volData[(Y+1)*volPitch+X+1] += fVal;
+}
+
+// supersampling version
+__global__ void devBP_SS(float* D_volData, unsigned int volPitch, unsigned int startAngle, bool offsets, const SDimensions dims)
+{
+ const int relX = threadIdx.x;
+ const int relY = threadIdx.y;
+
+ int endAngle = startAngle + g_anglesPerBlock;
+ if (endAngle > dims.iProjAngles)
+ endAngle = dims.iProjAngles;
+ const int X = blockIdx.x * g_blockSlices + relX;
+ const int Y = blockIdx.y * g_blockSliceSize + relY;
+
+ if (X >= dims.iVolWidth || Y >= dims.iVolHeight)
+ return;
+
+ const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f - 0.5f + 0.5f/dims.iRaysPerPixelDim) / dims.fDetScale;
+ const float fY = ( Y - 0.5f*dims.iVolHeight + 0.5f - 0.5f + 0.5f/dims.iRaysPerPixelDim) / dims.fDetScale;
+
+ const float fSubStep = 1.0f/(dims.iRaysPerPixelDim * dims.fDetScale);
+
+ float* volData = (float*)D_volData;
+
+ float fVal = 0.0f;
+ float fA = startAngle + 0.5f;
+ const float fT_base = 0.5f*dims.iProjDets - 0.5f + 1.5f;
+
+ if (offsets) {
+
+ for (int angle = startAngle; angle < endAngle; ++angle)
+ {
+ const float cos_theta = gC_angle_cos[angle];
+ const float sin_theta = gC_angle_sin[angle];
+ const float TOffset = gC_angle_offset[angle];
+
+ float fT = fT_base + fX * cos_theta - fY * sin_theta + TOffset;
+
+ for (int iSubX = 0; iSubX < dims.iRaysPerPixelDim; ++iSubX) {
+ float fTy = fT;
+ fT += fSubStep * cos_theta;
+ for (int iSubY = 0; iSubY < dims.iRaysPerPixelDim; ++iSubY) {
+ fVal += tex2D(gT_projTexture, fTy, fA);
+ fTy -= fSubStep * sin_theta;
+ }
+ }
+ fA += 1.0f;
+ }
+
+ } else {
+
+ for (int angle = startAngle; angle < endAngle; ++angle)
+ {
+ const float cos_theta = gC_angle_cos[angle];
+ const float sin_theta = gC_angle_sin[angle];
+
+ float fT = fT_base + fX * cos_theta - fY * sin_theta;
+
+ for (int iSubX = 0; iSubX < dims.iRaysPerPixelDim; ++iSubX) {
+ float fTy = fT;
+ fT += fSubStep * cos_theta;
+ for (int iSubY = 0; iSubY < dims.iRaysPerPixelDim; ++iSubY) {
+ fVal += tex2D(gT_projTexture, fTy, fA);
+ fTy -= fSubStep * sin_theta;
+ }
+ }
+ fA += 1.0f;
+
+ }
+
+ }
+
+ volData[(Y+1)*volPitch+X+1] += fVal / (dims.iRaysPerPixelDim * dims.iRaysPerPixelDim);
+}
+
+__global__ void devBP_SART(float* D_volData, unsigned int volPitch, float offset, float angle_sin, float angle_cos, const SDimensions dims)
+{
+ const int relX = threadIdx.x;
+ const int relY = threadIdx.y;
+
+ const int X = blockIdx.x * g_blockSlices + relX;
+ const int Y = blockIdx.y * g_blockSliceSize + relY;
+
+ if (X >= dims.iVolWidth || Y >= dims.iVolHeight)
+ return;
+
+ const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f ) / dims.fDetScale;
+ const float fY = ( Y - 0.5f*dims.iVolHeight + 0.5f ) / dims.fDetScale;
+
+ const float fT_base = 0.5f*dims.iProjDets - 0.5f + 0.5f;
+
+ const float fT = fT_base + fX * angle_cos - fY * angle_sin + offset;
+ const float fVal = tex2D(gT_projTexture, fT, 0.5f);
+
+ D_volData[(Y+1)*volPitch+X+1] += fVal;
+}
+
+
+bool BP(float* D_volumeData, unsigned int volumePitch,
+ float* D_projData, unsigned int projPitch,
+ const SDimensions& dims, const float* angles, const float* TOffsets)
+{
+ // TODO: process angles block by block
+ assert(dims.iProjAngles <= g_MaxAngles);
+
+ float* angle_sin = new float[dims.iProjAngles];
+ float* angle_cos = new float[dims.iProjAngles];
+
+ bindProjDataTexture(D_projData, projPitch, dims.iProjDets+2, dims.iProjAngles);
+
+ for (unsigned int i = 0; i < dims.iProjAngles; ++i) {
+ angle_sin[i] = sinf(angles[i]);
+ angle_cos[i] = cosf(angles[i]);
+ }
+ cudaError_t e1 = cudaMemcpyToSymbol(gC_angle_sin, angle_sin, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
+ cudaError_t e2 = cudaMemcpyToSymbol(gC_angle_cos, angle_cos, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
+ assert(e1 == cudaSuccess);
+ assert(e2 == cudaSuccess);
+
+ if (TOffsets) {
+ cudaError_t e3 = cudaMemcpyToSymbol(gC_angle_offset, TOffsets, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
+ assert(e3 == cudaSuccess);
+ }
+
+ delete[] angle_sin;
+ delete[] angle_cos;
+
+ dim3 dimBlock(g_blockSlices, g_blockSliceSize);
+ dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices,
+ (dims.iVolHeight+g_blockSliceSize-1)/g_blockSliceSize);
+
+ cudaStream_t stream;
+ cudaStreamCreate(&stream);
+
+ for (unsigned int i = 0; i < dims.iProjAngles; i += g_anglesPerBlock) {
+
+ if (dims.iRaysPerPixelDim > 1)
+ devBP_SS<<<dimGrid, dimBlock, 0, stream>>>(D_volumeData, volumePitch, i, (TOffsets != 0), dims);
+ else
+ devBP<<<dimGrid, dimBlock, 0, stream>>>(D_volumeData, volumePitch, i, (TOffsets != 0), dims);
+ }
+ cudaThreadSynchronize();
+
+ cudaTextForceKernelsCompletion();
+
+ cudaStreamDestroy(stream);
+
+ return true;
+}
+
+bool BP_SART(float* D_volumeData, unsigned int volumePitch,
+ float* D_projData, unsigned int projPitch,
+ unsigned int angle, const SDimensions& dims,
+ const float* angles, const float* TOffsets)
+{
+ // only one angle
+ bindProjDataTexture(D_projData, projPitch, dims.iProjDets, 1);
+
+ float angle_sin = sinf(angles[angle]);
+ float angle_cos = cosf(angles[angle]);
+
+ float offset = 0.0f;
+ if (TOffsets)
+ offset = TOffsets[angle];
+
+ dim3 dimBlock(g_blockSlices, g_blockSliceSize);
+ dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices,
+ (dims.iVolHeight+g_blockSliceSize-1)/g_blockSliceSize);
+
+ devBP_SART<<<dimGrid, dimBlock>>>(D_volumeData, volumePitch, offset, angle_sin, angle_cos, dims);
+ cudaThreadSynchronize();
+
+ cudaTextForceKernelsCompletion();
+
+ return true;
+}
+
+
+}
+
+#ifdef STANDALONE
+
+using namespace astraCUDA;
+
+int main()
+{
+ float* D_volumeData;
+ float* D_projData;
+
+ SDimensions dims;
+ dims.iVolWidth = 1024;
+ dims.iVolHeight = 1024;
+ dims.iProjAngles = 512;
+ dims.iProjDets = 1536;
+ dims.fDetScale = 1.0f;
+ dims.iRaysPerDet = 1;
+
+ unsigned int volumePitch, projPitch;
+
+ allocateVolume(D_volumeData, dims.iVolWidth+2, dims.iVolHeight+2, volumePitch);
+ printf("pitch: %u\n", volumePitch);
+
+ allocateVolume(D_projData, dims.iProjDets+2, dims.iProjAngles, projPitch);
+ printf("pitch: %u\n", projPitch);
+
+ unsigned int y, x;
+ float* sino = loadImage("sino.png", y, x);
+
+ float* img = new float[dims.iVolWidth*dims.iVolHeight];
+
+ memset(img, 0, dims.iVolWidth*dims.iVolHeight*sizeof(float));
+
+ copyVolumeToDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
+ copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);
+
+ float* angle = new float[dims.iProjAngles];
+
+ for (unsigned int i = 0; i < dims.iProjAngles; ++i)
+ angle[i] = i*(M_PI/dims.iProjAngles);
+
+ BP(D_volumeData, volumePitch, D_projData, projPitch, dims, angle, 0);
+
+ delete[] angle;
+
+ copyVolumeFromDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
+
+ saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img);
+
+ return 0;
+}
+#endif